|
发表于 2022-5-30 18:58:49
|
显示全部楼层
import numpy as np
import itertools
import random
import matplotlib.pyplot as plt
# 设置中文识别
plt.rcParams['font.sans-serif'] = ['SimHei']
# tsp问题
class Solution:
def __init__(self,X,start_node):
self.X = X #距离矩阵
self.start_node = start_node #开始的节点
self.array = [[0]*(2**(len(self.X)-1)) for i in range(len(self.X))] #记录处于x节点,未经历M个节点时,矩阵储存x的下一步是M中哪个节点
def transfer(self, sets):
su = 0
for s in sets:
su = su + 2**(s-1) # 二进制转换
return su
# tsp总接口
def tsp(self):
s = self.start_node
num = len(self.X)
cities = list(range(num)) #形成节点的集合
# past_sets = [s] #已遍历节点集合
cities.pop(cities.index(s)) #构建未经历节点的集合
node = s #初始节点
return self.solve(node, cities) #求解函数
def solve(self, node, future_sets):
# 迭代终止条件,表示没有了未遍历节点,直接连接当前节点和起点即可
if len(future_sets) == 0:
return self.X[node][self.start_node]
d = 99999
# node如果经过future_sets中节点,最后回到原点的距离
distance = []
# 遍历未经历的节点
for i in range(len(future_sets)):
s_i = future_sets[i]
copy = future_sets[:]
copy.pop(i) # 删除第i个节点,认为已经完成对其的访问
distance.append(self.X[node][s_i] + self.solve(s_i,copy))
# 动态规划递推方程,利用递归
d = min(distance)
# node需要连接的下一个节点
next_one = future_sets[distance.index(d)]
# 未遍历节点集合
c = self.transfer(future_sets)
# 回溯矩阵,(当前节点,未遍历节点集合)——>下一个节点
self.array[node][c] = next_one
return d
# 计算两点间的欧式距离
def distance(vector1,vector2):
d=0;
for a,b in zip(vector1,vector2):
d+=(a-b)**2;
return d**0.5; |
|